
1 
 

Capacitors and Capacitance: Parallel Plate; Cylindrical and Spherical capacitors; Capacitors in 

Series and Parallel; Energy Stored in an Electric Field; Dielectrics and Gauss’ Law 

 

Capacitor: 

A capacitor is a passive electronic component that stores energy in the form of an electrostatic 

field. In its simplest form, a capacitor consists of two conducting plates separated by an 

insulating material called the dielectric. 

  

 

 

 

 

 

This conventional arrangement, called a parallel-plate capacitor, consisting of two parallel 

conducting plates of area A separated by a distance d. 

The symbol we use to represent a capacitor  is based on the structure of a parallel-plate 

capacitor but is used for capacitors of all geometries.  

We assume for the time being that no material medium (such as glass or plastic) is present in the 

region between the plates.  

The capacitance is directly proportional to the surface areas of the plates, and is inversely 

proportional to the separation between the plates. Capacitance also depends on the dielectric 

constant of the substance separating the plates. 

https://whatis.techtarget.com/definition/dielectric-material
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When a capacitor is charged, its plates have charges of equal magnitudes but opposite signs: +q 

and -q. However, we refer to the charge of a capacitor as being q, the absolute value of these 

charges on the plates. (Note that q is not the net charge on the capacitor, which is zero.) 

Because the plates are conductors, they are equipotential surfaces; all points on a plate are at the 

same electric potential. Moreover, there is a potential difference between the two plates. For 

historical reasons, we represent the absolute value of this potential difference with V rather than 

with the ΔV we used in previous notation. 

The charge q and the potential difference V for a capacitor are proportional to each other; that is, 

 

q = CV. 

The proportionality constant C is called the capacitance of the capacitor. Its value depends only 

on the geometry of the plates and not on their charge or potential difference. The capacitance is a 

measure of how much charge must be put on the plates to produce a certain potential difference 

between them: The greater the capacitance, the more charge is required. 

The SI unit, capacitance is the coulomb per volt. This unit occurs so often that it is given a 

special name, the farad (F): 

 

1 farad = 1 F = 1 coulomb per volt = 1 C/V. 

As you will see, the farad is a very large unit. Submultiples of the farad, such as the microfarad 

(1 μF = 10
-6

 F) and the picofarad (1 pF = 10
-12

 F), are more convenient units in practice 

 

Charging a Capacitor 

 

One way to charge a capacitor is to place it in an electric circuit with a battery. An electric circuit 

is a path through which charge can flow. A battery is a device that maintains a certain potential 

difference between its terminals.  
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In Fig.a, a battery B, a switch S, an uncharged capacitor C, and interconnecting wires form a 

circuit. 

The same circuit is shown in the schematic diagram of Fig. b, in which the symbols for a battery, 

a switch, and a capacitor represent those devices. The battery maintains potential difference V 

between its terminals. The terminal of higher potential is labeled + and is often called the 

positive terminal; the terminal of lower potential is labeled - and is often called the negative 

terminal. 

The circuit shown in Figs. a and b is said to be incomplete because switch S is open; that is, the 

switch does not electrically connect the wires attached to it. When the switch is closed, 

electrically connecting those wires, the circuit is complete and charge can then flow through the 

switch and the wires. 

As we discussed, the charge that can flow through a conductor, such as a wire, is that of 

electrons. 

When the circuit of Fig. (a,b) is completed, electrons are driven through the wires by an electric 

field that the battery sets up in the wires. The field drives electrons from capacitor plate h to the 

positive terminal of the battery; thus, plate h, losing electrons, becomes positively charged. 

The field drives just as many electrons from the negative terminal of the battery to capacitor 

plate l; thus, plate l, gaining electrons, becomes negatively charged. 

 

Initially, when the plates are uncharged, the potential difference between them is zero. As the 

plates become oppositely charged, that potential difference increases until it equals the potential 

difference V between the terminals of the battery. 

Then plate h and the positive terminal of the battery are at the same potential, and there is no 

longer an electric field in the wire between them. 

Similarly, plate l and the negative terminal reach the same potential, and there is then no electric 

field in the wire between them. 

Thus, with the field zero, there is no further drive of electrons. The capacitor is then said to be 

fully charged, with a potential difference V and charge q that are related by Eq.  
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 Q  =  C V 

 

Calculating the Capacitance 

To calculate the capacitance of a capacitor once we know its geometry. Because we shall 

consider a number of different geometries, it seems wise to develop a general plan to simplify 

the work. 

In brief our plan is as follows: 

(1) Assume a charge q on the plates 

(2) Calculate the electric field between the plates in terms of this charge, using Gauss’ law 

 

(3) Calculate the potential difference V between the plates from Eq. ( ) 

 (4) Calculate C from Eq.( q = CV). 

 

Calculating the Electric Field 

To relate the electric field between the plates of a capacitor to the charge q on either plate, we 

shall use Gauss’ law: 

     (1) 

Here q is the charge enclosed by a Gaussian surface and     is the net electric 

flux through that surface. In all cases that we shall consider, the Gaussian surface will be such 

that whenever there is an electric flux through it,  will have a uniform magnitude E and the 

vectors  and will be parallel. The above equation, then reduces to 

 

    (2) 
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Calculating the Potential Difference 

The potential difference between the plates of a capacitor is related to the field by 

 

    (3) 

in which the integral is to be evaluated along any path that starts on one plate and ends on the 

other. 

We shall always choose a path that follows an electric field line, from the negative plate to the 

positive plate. 

For this path, the vectors  and  will have opposite directions; so the dot product will be 

equal to .Thus, the right side of above Eq. will then be positive. Letting V represent the 

difference Vf-Vi, we can then recast Eq. as 

 

  (4) 

in which the - and + remind us that our path of integration starts on the negative plate and ends 

on the positive plate. 

 

A Parallel-Plate Capacitor 

We assume, as Fig. 25-5 suggests, that the plates of our parallel-plate capacitor are so large and 

so close together that we can neglect the fringing of the electric field at the edges of the plates, 

taking  to be constant throughout the region between the plates. 
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We draw a Gaussian surface that encloses just the charge q on the positive plate, as in above 

Fig.. From Eq. 2 we can then write 

      (5) 

 

Equation 4 yield     (6) 

In Eq. 6, E can be placed outside the integral because it is a constant; the second integral then is 

simply the plate separation d. 

put q and V into the relation q = CV , we get 

 

     (7) 

 

 

 

A Cylindrical Capacitor 

Figure shows, in cross section, a cylindrical capacitor of length L formed by two coaxial 

cylinders of radii a and b. We assume that L>>( b so that we can neglect the fringing of the 

electric field that occurs at the ends of the cylinders. Each plate contains a charge of magnitude 

q. 
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In which 2πrL is the area of the curved part of the Gaussian surface. There is no flux through the 

end caps. Solving for E yields 

    (8) 

Put these values in eq 4 

     (9) 

 

As a Gaussian surface, we choose a cylinder of length L and radius r, closed by end caps 

and placed as is shown in Fig. It is coaxial with the cylinders and encloses the central 

cylinder and thus also the charge q on that cylinder. Equation 2 then relates that charge 

and the field magnitude E as 
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where we have used the fact that here ds = -dr (we integrated radially inward). 

From the relation C = q/V, we then have 

      (10) 

 

We see that the capacitance of a cylindrical capacitor, like that of a parallel-plate capacitor, 

depends only on geometrical factors, in this case the length L and the two radii b and a. 

 

A Spherical Capacitor 

 

  

      (11) 

Which we recognize as the expression for the electric field due to a uniform spherical charge 

distribution (Eq. 11). 

If we substitute this expression into Eq. 4, we find 

 

This also Figure can also serve as a central cross 

section of a capacitor that consists of two concentric 

spherical shells, of radii a and b. As a Gaussian 

surface we draw a sphere of radius r concentric with 

the two shells; then Eq. 2 yields 

 

in which 4πr
2
 is the area of the spherical Gaussian 

surface. We solve this equation for E, obtaining 
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  (12) 

where again we have substituted -dr for ds. If we now substitute Eq. 12 into 

q = CV, we find 

       (13) 

 

 

Capacitors in Parallel 

Figure. (a) Shows an electric circuit in which three capacitors are connected in parallel to battery 

B. 

Each capacitor has the same potential difference V, which produces charge on the capacitor. (In 

Fig. a, the applied potential V is maintained by the battery.) In general, When we analyze a 

circuit of capacitors in parallel, we can simplify it with this mental replacement: 

 

   

 

Figure b shows the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the 

three capacitors (with actual capacitances C1,C2, and C3) of Fig. a. 

To derive an expression for Ceq in Fig. b, we first use Eq. q = CV to find the charge on each 

actual capacitor: 

 

The total charge on the parallel combination 
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The equivalent capacitance, with the same total charge q and applied potential difference V as the 

combination, is then 

 

 For  n number of capacitors,  

 

Capacitors in Series 

When the battery is first connected to the series of capacitors, it produces charge -q on the 

bottom plate of capacitor 3. That charge then repels negative charge from the top plate of 

capacitor 3 (leaving it with charge +q). The repelled negative charge moves to the bottom plate 

of capacitor 2 (giving it charge - q). That charge on the bottom plate of capacitor 2 then repels 

negative charge from the top plate of capacitor 2 (leaving it with charge +q) to the bottom plate 

of capacitor 1 (giving it charge - q). Finally, the charge on the bottom plate of capacitor 1 helps 

move negative charge from the top plate of capacitor 1 to the battery, leaving that top plate with 

charge +q. 
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To derive an expression for Ceq in Fig. 25-9b, we first use q = CV to find the potential 

difference of each actual capacitor: 

 

 

The total potential difference V due to the battery is the sum of these three potential differences. 

Thus, 

 

 

For n number of capacitors as 

  

The equivalent capacitance of a series of capacitances is always less than the least capacitance in 

the series 
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DI ELECTRICS AND GAUSS’S LAW 

In our discussion of Gauss’ law, we assumed that the charges existed in a vacuum. Here we shall 

see how to modify and generalize that law if dielectric materials. Figure 1 shows a parallel-plate 

capacitor of plate area A, both with and without a dielectric. We assume that the charge q on the 

plates is the same in both situations. For the situation, without a dielectric, we can find the 

electric field between the plates as we did in Gauss’ law (electric field of oppositely charged 

parallel plates). 

            

Fig 1.     A parallel-plate capacitor (a) without and (b) with a dielectric slab inserted. The charge q on the plates is 

assumed to be the same in both cases. 

We enclose the charge +q on the top plate with a Gaussian surface and then apply Gauss’  law. 

Letting E0 represent the magnitude of the field, we find 

                      

or 
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In Fig. 1b, with the dielectric in place, we can find the electric field 

between the plates (and within the dielectric) by using the same Gaussian surface. However, now 

the surface encloses two types of charge. It still encloses charge +q on the top plate, but it now 

also encloses the induced charge -q, on the top face of the dielectric. The charge on the 

conducting plate is said to be free charge because it can move if we change the electric potential 

of the plate; the induced charge on the surface of the dielectric is not free charge because it 

cannot move from that surface. The net charge enclosed by the Gaussian surface in Fig 1b is   

q -q
/
 so Gauss’ law now gives 

 

The effect of the dielectric is to weaken the original field E0 by a factor of k; so we may write 

              

Comparison of Eqs. 2 and 3 shows that 

 

or 

1 

3 

4 

2 



14 
 

Equation 4 shows correctly that the magnitude q, of the induced surface charge is less than that 

of the free charge q and is zero if no dielectric is present (because then k =1 in Eq. 4). 

By substituting for q - q, from Eq. 4 in Eq. 1 , we can write Gauss’law in the form 

 

This equation, although derived for a parallel-plate capacitor, is true generally and is the most 

general form in which Gauss’ law can be written. 

Note 

1. The flux integral now involves       not just     . (The vector        is sometimes called the 

electric displacement      , so that Eq. 5 can be written in the form            .) 

2. The charge q enclosed by the Gaussian surface is now taken to be the free charge only. The 

induced surface charge is deliberately ignored on the right side of Eq. 5,  having been taken fully 

into account by introducing the dielectric constant   on the left side.  

3. Equation 5 differs from eq ,i.e., (              ), our original statement of Gauss’ law, 

only in that    in the latter equation has been replaced by    . We keep k inside the integral of 

Eq. 5 to allow for cases in which k is not constant over the entire Gaussian surface. 

  

  

5 
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ENERGY STORED IN AN ELECTRIC FIELD 

Work must be done by an external agent to charge a capacitor. Starting with an uncharged 

capacitor, for example, imagine that—using “magic tweezers”—you remove electrons from one 

plate and transfer them one at a time to the other plate. The electric field that builds up in the 

space between the plates has a direction that tends to oppose further transfer. Thus, as charge 

accumulates on the capacitor plates, you have to do increasingly larger amounts of work to 

transfer additional electrons. In practice, this work is done not by “magic tweezers” but by a 

battery, at the expense of its store of chemical energy.  

We visualize the work required to charge a capacitor as being stored in the form of electric 

potential energy U in the electric field between the plates. You can recover this energy at will, by 

discharging the capacitor in a circuit, just as you can recover the potential energy stored in a 

stretched bow by releasing the bowstring to transfer the energy to the kinetic energy of an arrow. 

Suppose that, at a given instant, a charge q
/
, has been transferred from one plate of a capacitor to 

the other. The potential difference V
/
 , between the plates at that instant will be q

/
/C. If an extra 

increment of charge dq
/
 is then transferred, the increment of work required will be,  

 

The work required to bring the total capacitor charge up to a final value q is 
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This work is stored as potential energy U in the capacitor, so that 

 

From eq, (    ), we can also write this as 

 

Equations 1 and 2 hold no matter what the geometry of the capacitor is.  

To gain some physical insight into energy storage, consider two parallel-plate capacitors 

that are identical except that capacitor 1 has twice the plate separation of capacitor 2. Then 

capacitor 1 has twice the volume between its plates and also, from Eq,    
   

 
 , half the 

capacitance of capacitor 2. Eq (      ) tells us that if both capacitors have the same charge 

q, the electric fields between their plates are identical. And Eq. 1 tells us that capacitor 1 has 

twice the stored potential energy of capacitor 2. Thus, of two otherwise identical capacitors with 

the same charge and same electric field, the one with twice the volume between its plates has 

twice the stored potential energy. Arguments like this tend to verify our earlier assumption: 

‘The potential energy of a charged capacitor may be viewed as being stored in the 

electric field between its plates’ 

 

1 

2 


